

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE STRUCTURE-R19

II Year – I SEMESTER		L	T	P	С
		3	0	0	3
	ELECTRICAL CIRCUIT ANALYSIS-II				

Preamble:

This course aims at study of three phase systems, transient analysis, network synthesis and fourier analysis for the future study and analysis of power systems.

Learning Objectives:

- To study the concepts of balanced and unbalanced three-phase circuits.
- To study the transient behavior of electrical networks with DC, pulse and AC excitations.
- To study the performance of a network based on input and output excitation/response.
- To understand the realization of electrical network function into electrical equivalent passive elements.
- To understand the application of fourier series and fourier transforms for analysis of electrical circuits.

UNIT-I:

Balanced Three phase circuits

Phase sequence, star and delta connection of sources and loads, relation between line and phase voltages and currents.

Analysis of three phase balanced and unbalanced circuits. Loop method, Star-Delta transformation technique, two wattmeter method for measurement of three phase power.

UNIT-II:

Transient Analysis in DC and AC circuits

Transient response of R-L, R-C, R-L-C circuits for DC and AC excitations, solution using differential equations and Laplace transforms.

UNIT-III:

Two Port Networks

Two port network parameters -Z, Y, Transmission and Inverse Transmission parameters, Hybrid and Inverse hybrid parameters.

Relationships between parameter sets simplification of cascaded and parallel networks.

UNIT-IV:

Fourier analysis

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE STRUCTURE-R19

Fourier theorem – trigonometric form and exponential form of Fourier series, conditions of symmetry – line spectra and phase angle spectra, analysis of electrical circuits to non-sinusoidal periodic waveforms.

UNIT-V:

Fourier Transforms

Fourier integrals and Fourier transforms – properties of Fourier transforms physical significance of the Fourier transform and its application to electrical circuits.

Learning Outcomes:

After the completion of the course the student should be able to:

- solve three- phase circuits under balanced and unbalanced condition.
- find the transient response of electrical networks for different types of excitations.
- find parameters for different types of network.
- realize electrical equivalent network for a given network transfer function.
- extract different harmonics components from the response of an electrical network.

Text Books:

- 1. Engineering Circuit Analysis by William Hayt and Jack E.Kemmerley,Mc Graw Hill Company,6 th edition
- 2. Network synthesis: Van Valkenburg: Prentice-Hall of India Private Ltd.

Reference Books:

- 1. Fundamentals of Electrical Circuits by Charles K.Alexander and Mathew N.O.Sadiku, Mc Graw Hill Education (India)
- 2. Introduction to circuit analysis and design by Tildon Glisson. Jr, Springer Publications.
- 3. Circuits by A.Bruce Carlson, Cengage Learning Publications
- 4. Network Theory Analysis and Synthesis by Smarajit Ghosh, PHI publications
- 5. Networks and Systems by D. Roy Choudhury, New Age International publishers
- 6. Electric Circuits by David A. Bell, Oxford publications
- 7. Circuit Theory (Analysis and Synthesis) by A.Chakrabarthi, Dhanpat Rai&Co.